Sitemap  |  Home  |  Contact  |  CAS  |      中文
 
 
  Research
    Research Divisions
    Research Progress
    Achievements
    Research Programs
    Monthly Research Highlights
Location: Home>Research>Research Progress
Facile Synthesis of Fe2O3 Nano-Dots@Nitrogen-Doped Graphene for Supercapacitor Electrode with Ultralong Cycle Life in KOH Electrolyte
2016-06-16 ArticleSource:
Close Text Size: A A A Print

 
Abstract: Fe2O3 nanodots supported on nitrogen-doped graphene sheets (denoted as Fe2O3 NDs@NG) with different loading masses are prepared through a facile one-pot solvothermal method. The resulting Fe2O3 NDs@NG composites exhibit outstanding electrochemical properties in aqueous KOH electrolyte. Among them, with the optimal loading mass of Fe2O3 NDs, the corresponding Fe2O3 NDs@NG-0.75 sample is able to deliver a high specific capacitance of 274 F g(-1) at 1 A g(-1) and the capacitance is still as high as 140 F g(-1) even at a ultrahigh current density of 50 A g(-1), indicating excellent rate capability. More remarkably, it displays superior capacitance retention after 100 000 cycles (about 75.3% at 5 A g(-1)), providing the best reported long-term cycling stability for iron oxides in alkaline electrolytes to date. Such excellent electrochemical performance is attributed to the right combination of highly dispersed Fe2O3 NDs and appropriately nitrogen-doped graphene sheets, which enable the Fe2O3 ND5@NG-0.75 to offer plenty of accessible redox active sites, facilitate the electron transfer and electrolyte diffusion, as well as effectively alleviate the volume change of Fe2O3 NDs during the charge discharge process.

KeyWords Plus: ELECTROCHEMICAL ENERGY-STORAGE; OXIDE QUANTUM DOTS; HIGH-PERFORMANCE; CARBON NANOTUBES; ASYMMETRIC SUPERCAPACITORS; HYDROTHERMAL SYNTHESIS; COMPOSITE ELECTRODES; IRON PENTACARBONYL; SHEET COMPOSITES; LITHIUM STORAGE

Published in ACS APPLIED MATERIALS & INTERFACES, 8 (14):9335-9344; 10.1021/acsami.6b00225 APR 13 2016

Address: No.18,Tianshui Middle Road,Lanzhou,P.R.China
ZIP Code:730000 Tel: 86-0931-4968009  Fax: 86-0931-8277088
E-mail: webeditor@licp.cas.cn