Sitemap  |  Home  |  Contact  |  CAS  |      中文
 
 
  ·About us
  ·Research
  ·People
  ·International Cooperation
  ·News
  ·Papers of Tribology
  ·Papers of Journal of Molecular Catalysis
  ·Papers of Analysis and Testing Technology and Instruments
  ·Resources
  ·Education & Training
  ·Join Us
  ·Societies & Publications
  ·Papers
  ·Living in Gansu
  ·Links
  ·Sitemap
  ·Pictures
  ·Special
  ·Research Group Page
  ·zhangjunyan

Location: Home>Papers of Tribology
Corrosive-Wear Behavior of Mo Modified Ti6Al4V Alloy by Wear-Electrochemical Noise Method
2012-08-21 ArticleSource:
Close Text Size: A A A Print

ZHANG Min, MA Yong, ZHANG Xiangyu, FAN Ailan*, TANG Bin

(Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract: The Mo surface modified layer on Ti6Al4V substrate is obtained by plasma surface alloying. The structure and composition of the Mo surface modified layer are investigated by X-ray diffraction (XRD) and glow discharge optical emission spectroscopy. The duplex Mo modified layer contains a pure Mo coating on subsurface and diffusion layers between the subsurface and substrate. XRD analysis of the Mo modified layer reveals that a Mo phase exists in the modified layer with <110> and <211> orientations in the subsurface. Corrosion-wear behaviors of Ti6Al4V substrate and Mo modified Ti6Al4V alloy sliding against corundum are investigated with the wear-electrochemical noise technique in a 0.5mol/L NaCl solution. Results indicate that the Mo modified layer improves the antiwear and friction reduction properties of Ti6Al4V. Moreover, the Mo modified layer improves self-corroding electric potentials and decrease the current of Ti6Al4V. The Mo modified layer can improve the corrosion-wear behavior of Ti6Al4V.

Key words: Ti6Al4V; Mo modified layer; fretting friction; corrosion-wear behavior; electrochemical noise

E-mail: fanailan@tyut.edu.cn 

Tribology, Vol. 32, Issue 3, 2012, 301~305

Address: No.18,Tianshui Middle Road,Lanzhou,P.R.China
ZIP Code:730000 Tel: 86-0931-4968009  Fax: 86-0931-8277088
E-mail: webeditor@licp.cas.cn