Effects of water molecules on the formation of transfer films and the occurrence of superlow friction

Abstract
The establishment of superlow friction in moist air is very important for the engineering application of hydrogenated diamond-like carbon (H-DLC) films. Nevertheless, water molecules in the surrounding atmosphere always result in the failure of the near-frictionless state. This work aims to explore the effects of water molecules in the environment and the material of the counterparts on the tribological performance of a composite structure prepared by depositing MoS2 on a H-DLC film. The results indicated that the existence of water molecules in the atmosphere is beneficial for achieving stable superlubricity for the material system because it helps retain the insitu formed MoS2 transfer film on the counterpart. In the presence of water molecules, the wear interface was replaced by a robust and incommensurate MoS2 tribolayer/H-DLC sliding interface, which was responsible for the superlow friction achieved in this work. The results also revealed that the ZrO2 counterpart was capable of retaining the as-formed MoS2 transfer film and establishing long-lasting superlow friction even in dry air. The mechanisms behind this phenomenon are also discussed in this paper.

Keywords Plus:DIAMOND-LIKE CARBONULTRA-LOW FRICTIONGRAPHENESUPERLUBRICITYBEHAVIORWEAREVOLUTIONVACUUMORIGINEDGES

Published in CERAMICS INTERNATIONAL,Volume 47;1016/j.ceramint.2021.04.140,1 2021

Copyright © Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
Address: No.18,Tianshui Middle Road,Lanzhou,P.R.China ZIP Code:730000 Tel: 86-0931-4968009 Fax: 86-0931-8277088
E-mail: webeditor@licp.cas.cn