Si and N incorporated hydrogenated diamond like carbon film with excellent performance for marine corrosion resistance

Abstract
Under the background of the development of marine resources, marine corrosion has become a focus problem. A series of Si and N incorporated hydrogenated diamond like carbon (SiN-HDLC) film with excellent corrosion resistance performance was deposited by plasma enhanced chemical vapor deposition. Results suggest that the sp3/sp2 ratio of SiN-HDLC films presents a trend of increasing first and then decreasing with the improvement of the N2/SiH4 ratio. The adhesion between the as-deposited HDLC film and the substrate is tight (no microcracks) and the film surface is uniform and compact. The potentiodynamic polarization and electrochemical impedance spectroscopy results indicate that the SiN-HDLC film possesses better corrosion resistance in artificial seawater than that of Si-HDLC and N-HDLC film, and is much better than 304SS substrate. Besides, the SiN-HDLC film with the N2/SiH4 of 1/1 shows the best corrosion resistance. The as-deposited SiN-HDLC film possesses more excellent corrosion resistance in the artificial seawater environment compared with the reported DLC films and this study provides a promising protective material for marine corrosion resistance.

Keywords Plus:WATER TRANSPORT BEHAVIORSIMPEDANCE MODELSTHIN-FILMSCOATED METALSSTEELDLCDEPOSITIONFABRICATIONCOATINGSADHESION

Published in CERAMICS INTERNATIONAL,Volume48;10.1016/j.ceramint.2021.12.052,MAR 15 2022

Copyright © Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
Address: No.18,Tianshui Middle Road,Lanzhou,P.R.China ZIP Code:730000 Tel: 86-0931-4968009 Fax: 86-0931-8277088
E-mail: webeditor@licp.cas.cn Technical support: Qingyun Software