Robust Superamphiphobic Fabrics with Excellent Hot Liquid Repellency and Hot Water Vapor Resistance

Abstract
Superamphiphobic surfaces progress rapidly but suffer from the issues of low repellency to hot liquids, complicated and nonaqueous preparation methods, and low durability. Here, a simple waterborne approach is developed to fabricate robust superamphiphobic fabrics with excellent hot liquid repellency and hot water vapor resistance. First, a perfluorodecyl polysiloxane (FD-POS) aqueous suspension was prepared by hydrolytic cocondensation of (3-glycidyloxy propyl)trimethoxysilane and 1H,1H,2H,2H-perfluorodecyltriethoxysilane with SiO2 particles. Then, the superamphiphobic fabrics were fabricated by dipping polyester fabrics in the suspension, which were then cured. The fabrics show excellent superamphiphobicity owing to the combination of the hierarchical micro-/nanostructure and FD-POS with very low surface energy. The superamphiphobic fabrics feature excellent hot liquid repellency even for a large volume of 130.0 degrees C soybean oil and condensed small droplets from similar to 90.0 degrees C water vapor. This is attributed to its high superamphiphobicity, excellent hot water vapor resistance, and outstanding thermal durability. In addition, the superamphiphobic fabrics exhibit high mechanical and chemical durability against washing, abrasion, and immersion in corrosive or organic liquids. Thus, hot liquid repellent superamphiphobic fabrics may find applications in various fields such as antiadhesion of various hot liquids and in efficiently preventing scalding.

Keywords Plus:SURFACE-TENSIONCOATINGS

Published in LANGMUIR,Volume38;10.1021/acs.langmuir.2c00532,MAY 10 2022

Copyright © Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
Address: No.18,Tianshui Middle Road,Lanzhou,P.R.China ZIP Code:730000 Tel: 86-0931-4968009 Fax: 86-0931-8277088
E-mail: webeditor@licp.cas.cn