Exploring the influences of the counterpart materials on friction and wear behaviors of atmospheric plasma-sprayed YSZ coating

Abstract
Sliding wear behaviors of atmospheric plasma-sprayed Yttria Stabilized Zirconia (YSZ) coating mated with four metallic or ceramic counterparts (Si3N4, Al2O3, GCr15 and ZrO2) were investigated. It has been found that YSZ coatings in contact with Si3N4 and GCr15 show better tribological performances than the other cases, which is due to the formation of the tribolayer mainly consisting of Si3N4 and Fe2O3 respectively on the worn surfaces. In the case of YSZ coating-Al(2)O(3)and YSZ coating-ZrO(2 )tribopairs, the wear debris are more irregular and larger in size, resulting in severe abrasive wear and brittle fracture of debris particles. In particular, the specific wear rate of YSZ coating sliding against GCr15 is negative due to the significant material transfer of the tribo-oxide layer, while that of YSZ coating sliding against ZrO2 is the highest. Amorphization of the wear particles appears in the four cases due to the repeated mechanical action. It has been demonstrated that the wear of YSZ coating de-teriorates with the increased flash temperature between the contact surfaces during rubbing process.

Keywords Plus:THERMAL BARRIER COATINGSTRIBOLOGICAL PROPERTIESRAMAN IDENTIFICATIONCORROSION PRODUCTSSLIDING WEARTEMPERATUREZRO2COMPOSITESCERAMICSHARDNESS

Published in CERAMICS INTERNATIONAL,Volume48;10.1016/j.ceramint.2022.06.214,OCT 15 2022

Copyright © Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
Address: No.18,Tianshui Middle Road,Lanzhou,P.R.China ZIP Code:730000 Tel: 86-0931-4968009 Fax: 86-0931-8277088
E-mail: webeditor@licp.cas.cn