Exploring the Adaptability of 4D Printed Shape Memory Polymer Featuring Dynamic Covalent Bonds

Abstract

4D printing (4DP) of high-performance shape memory polymers (SMPs), particularly using digital light processing (DLP), has garnered intense global attention due to its capability for rapid and high-precision fabrication of complex configurations, meeting diverse application requirements. However, the development of high-performance dynamic shape memory polymers (DSMPs) for DLP printing remains a significant challenge due to the inherent incompatibilities between the photopolymerization process and the curing/polymerization of high-strength polymers. Here, a mechanically robust DSMP compatible is developed with DLP printing, which incorporates dynamic covalent bonds of imine linking polyimide rigid segments, exhibiting remarkable mechanical performance (tensile strength approximate to 41.7 MPa, modulus approximate to 1.63 GPa) and thermal stability (Tg similar to 113 degrees C, Td similar to 208 degrees C). More importantly, benefiting from the solid-state plasticity conferred by dynamic covalent bonds, 4D printed structures demonstrate rapid network adaptiveness, enabling effortless realization of reconfiguration, self-healing, and recycling. Meanwhile, the extensive pi-pi conjugated structures bestow DSMP with an intrinsic photothermal effect, allowing controllable morphing of the 4D configuration through dual-mode triggering. This work not only greatly enriches the application scope of high-performance personalized configurations but also provides a reliable approach to addressing environmental pollution and energy crises.

Published in SMALL;10.1002/smll.202406358

Copyright © Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences
Address: No.18,Tianshui Middle Road,Lanzhou,P.R.China ZIP Code:730000 Tel: 86-0931-4968009 Fax: 86-0931-8277088
E-mail: webeditor@licp.cas.cn